88 research outputs found

    Measure of similarity of amino acids or how to obtain the genetic code table from “nothing”

    Get PDF
    AbstractNature selects the genetic code table to have a minimum risk caused by a point mutation (a misprint in a text of nucleotide sequence). The purpose of this paper is to accurately formulate and verify this hypothesis. The “nothing” is 1.(1) the code table is a map: codon → amino acid;2.(2) the structure of amino acids in 3D-space is known

    Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    Get PDF
    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism

    Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics

    Full text link
    A family of non-equilibrium statistical operators is introduced which differ by the system age distribution over which the quasi-equilibrium (relevant) distribution is averaged. To describe the nonequilibrium states of a system we introduce a new thermodynamic parameter - the lifetime of a system. Superstatistics, introduced in works of Beck and Cohen [Physica A \textbf{322}, (2003), 267] as fluctuating quantities of intensive thermodynamical parameters, are obtained from the statistical distribution of lifetime (random time to the system degeneracy) considered as a thermodynamical parameter. It is suggested to set the mixing distribution of the fluctuating parameter in the superstatistics theory in the form of the piecewise continuous functions. The distribution of lifetime in such systems has different form on the different stages of evolution of the system. The account of the past stages of the evolution of a system can have a substantial impact on the non-equilibrium behaviour of the system in a present time moment.Comment: 18 page

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Stationary renewal processes

    No full text

    Remark on the theorem of stone

    No full text

    Homogeneous renewal equation

    No full text
    corecore